
MEMO GitHub
19/03/2023 – 20/03/2023 - Création du dépôt sur Github

- Maj : 11/01/2026 -

https://github.com/ username / projectName /

$ git config --global user.email # Affiche le mail utilisé sur le compte
$ git config --global user.name # idem pour le nom

$ git config --global user.name "username " # Définit l’utilisateur

$ git config --global user.email "a@b.fr" # Définit son mail

$ git config --global user.password "12345" # Définit son mot de passe

$ git clone https://<Token>@github.com/username/projectName.git > clone le repository
distant dans le répertoire local courant. <Token> est le code de sécurité fourni par
Github, en remplacement de la traditionnelle paire { user, password }

Créer un nouveau dépôt local :

$ cd leRepertoireLocal ; git init

Pour créer un jeton qui permet l’accès au dépôt, à la commande git clone… :

Menu Profil > Settings > <>Developper settings > Personnal access > tokens > Tokens (classic)

$ cd projectName

Créer un commit :

$ echo « Bonjour » > README.md

$ git status > pour constater que le fichier a bien été créé, pas encore ajouté au dépôt.

$ git add README.md > ajoute le fichier dans l’espace de staging (index)

$ git status

$ git commit -m « ajout fichier README.md » > pour créer un commit à partir de l’espace de staging

$ git push > pour uploader le commit sur le dépôt distant

https://github.com/homer00/gedem

Créér un dépôt local puis distant (github):

cd rep_git ; git init

git add .

git commit -m « depot projet »

git remote add NomProjet https://github.com/<login_user>/NomProjet.git

Initialisation dépôt Git

cd rep_du_projet_git

git switch --create main

git remote set-url origin git@gitlab.com:<user_login>/mon_projet.git

redéfinit l'URL du dépôt

git remote -v

pour check

verification du bon fonctionnement :

git add .

git commit -m "Your commit message"

git push origin main

Initialisation du dépôt git pour un repo perso (Gitlab) :
cd existing_repo

git init --initial-branch=main

git remote add origin git@gitlab.com:<user_login>/mon_projet.git

git branch -M main // si la branche pas déjà créée

git add .

git commit -m "depot init"

git push -uf origin main

git push --set-upstream origin main

ajouter un dépôt (pour avoir gitlab + github :

git remote -v

git remote add github git@github.com:<gitUser..29>/deezerclone29.git

https://github.com/

Opérations intéressantes

git push origin branch1:branch2
"Pousse la branche locale branch1 vers la branche branch2 sur le dépôt distant origin."

branch1 doit être une branche locale (celle que qu’on veut pousser).

branch2 doit être le nom de la branche sur le dépôt distant (celle qui va recevoir les modifications).

git push origin ma-branche-locale:nouvelle-branche-sur-origin

Si branch2 n'existe pas encore sur origin, elle sera créée automatiquement.

Réaliser un clone local branch2 à partir de branch1 :

git checkout branch2
On se place sur branch2.

git reset --hard branch1
Réinitialise branch2 pour qu’elle pointe sur branch1

Autre possibilité :
Supprimer et recréer branch2 depuis branch1 :

Recréer branch2 depuis branch1 :

git branch -D branch2 git checkout branch1
git branch branch2

branch2 sera désormais un clone parfait de branch1, avec le même historique et le même contenu.

[Forcer un push :]
git push --force github main (ou origin dev...)

git push –force-with-lease --force-if-includes origin main

• Sécurité : --force-with-lease vérifie d’abord si l’état de la branche distante a changé avant de procéder. Si
des commits ont été ajoutés par un autre contributeur, le push échouera, t’évitant ainsi d’écraser le travail
des autres.

• Conservation de l’historique : en évitant d’écraser des commits, tu préserves l’historique des
contributions, ce qui facilite le suivi des changements et la collaboration.

Force-if-includes :

 Cette option permet de ne forcer le push que si ta branche locale inclut tous les commits de la branche distante. En
d’autres termes, elle garantit que tu ne perdes pas accidentellement des commits qui pourraient être présents sur le
dépôt distant.

Pour mettre à jour branch2 avec les changements de branch1 sans perdre son historique et sans gérer de
conflits (quand on est le seul à travailler dessus), voici les meilleures approches :

1. Fusionner branch1 dans branch2 (sans conflit)
Si branch1 et branch2 ont divergé, mais que l’on veut conserver l’historique
de branch2 tout en y intégrant les changements de branch1 :

git checkout branch2
git merge branch1

• Avantage : L’historique de branch2 est conservé, et les changements de branch1 sont
ajoutés.

• Cas idéal : Si branch2 n’a pas de commits uniques que tu veux garder, ou si les
changements de branch1 sont simplement un avancement linéaire (pas de divergence
complexe).

2. Rebaser branch2 sur branch1 (historique linéaire)
Si on veut un historique linéaire et éviter un commit de fusion :

git checkout branch2
git rebase branch1

• Avantage : L’historique reste propre et linéaire, et branch2 intègre tous les
changements de branch1.

• Attention : Si branch2 a des commits uniques, ils seront "rejoués" sur branch1. Si ces
commits dépendent d’un état ancien de branch1, des conflits peuvent survenir (mais
comme tu es seul, tu peux les résoudre facilement).

Méthode Conserve l’historique ? Historique
linéaire ?

Risque de
conflit ?

git merge branch1 Oui Non Faible
git rebase branch1 Oui Oui Moyen

git reset --soft Non (mais garde les changements non
commités) Oui Aucun

Fusionne branch1 en acceptant tous ses changements :

git merge -X theirs branch1

L’option -X theirs indique à Git : "En cas de conflit, prends toujours la version de branch1 (le côté 'theirs')."

Attention : Cela écrase tous les changements de branch2 en cas de conflit.
Si on a déjà lancé un git merge et que tu es en plein milieu des conflits :

Accepter tous les changements de branch1 : git checkout --theirs .
Marquer les conflits comme résolus : git add .
Finaliser la fusion : git merge –continue

Travail en commun

Fetch :
Les branches distantes sont importées dans le dépôt local avec un nom de la forme dépôtDistant/nomBranche
L'action « fetch » récupère dans le dépôt local les versions disponibles sur un dépôt distant et met à jour ou crée les
branches de suivi

Merge :
On fusionne dans la branche courante la branche distante de même nom

Commit :
On archive le résultat de la fusion

Push :
On transfère sur le dépôt distant l'historique de la branche courante
L'action « push » transfère la branche locale sur le serveur. Si une branche de même nom n'existe pas sur le serveur, elle
est créée. Sinon, si un « fast-forward » peut être effectué, la branche sur le serveur est mise à jour. Sinon, le « push » est
refusé

Pull
L'action « pull » fait un « fetch » puis un « merge » dans une branche locale b à partir de la branche de suivi associée
(b/d par défaut)

Travailler à plusieurs avec un dépôt commun

Principe de base

– Dépôt « en ligne » accessible par tous, au moins occasionnellement
– Chacun « clone » le dépôt commun sur sa machine

Périodiquement :

 ● Mise à jour de son dépôt local à partir du dépôt commun

● Transfert de versions stables de son travail dans le dépôt commun

Principe « évolué »

– Faire un « fork » du dépôt commun et travailler avec ce dépôt personnel distant
– Faire des « pull request » vers le dépôt commun lorsqu'on a atteint une version stable sur son dépôt personnel distant

En résumé…

 On travaille toujours avec 2 dépôts●

– Le dépôt local
– Un dépôt « distant » (remote) auquel on associe un nom

 Les 4 principales commandes git permettant d’interagir avec un dépôt distant sont :●

- git fetch : on récupère en local le contenu du dépôt distant
- git pull : équivalent d’un git fetch suivi d’un git merge
- git push : on transfère l’état actuel de la branche courante (+historique) vers le dépôt distant
- git clone : on crée un dépôt local à partir d’un dépôt distant

Commandes GIT de Base

Git config
• L’une des commandes git les plus utilisées est git config. On l’utilise pour

configurer les préférences de l’utilisateur : son mail, l’algorithme utilisé
pour diff, le nom d’utilisateur et le format de fichier etc. Par exemple, la
commande suivante peut être utilisée pour définir le mail d’un utilisateur:

git config --global user.email sam@google.com

Consultation :

git config --get user.email

git config -l

Git init
• Cette commande est utilisée pour créer un nouveau dépôt GIT :

git init

Git add
• La commande git add peut être utilisée pour ajouter des fichiers à l’index. Par

exemple, la commande suivante ajoutera un fichier nommé temp.txt dans le
répertoire local de l’index:

git add temp.txt

Clone git
• La commande git clone est utilisée pour la vérification des dépôts. Si le dépôt

se trouve sur un serveur distant, utilisez:

git clone alex@93.188.160.58:/chemin/vers/dépôt

• Inversement, si une copie de travail d’un dépôt local doit être créée,
utilisez:

git clone /chemin/vers/dépôt

Git commit
• La commande git commit permet de valider les modifications apportées au HEAD.

Notez que tout commit ne se fera pas dans le dépôt distant.

git commit –m “Description du commit”

Git status
• La commande git status affiche la liste des fichiers modifiés ainsi que les

fichiers qui doivent encore être ajoutés ou validés. Usage:

git status

https://www.hostinger.fr/tutoriels/comment-utiliser-une-branche-git
mailto:sam@google.com

Git push
• Git push est une autre commandes GIT de base. Un simple push envoie les

modifications locales apportées à la branche principale associée :

git push origin master

Git checkout
• La commande git checkout peut être utilisée pour créer des branches ou pour

basculer entre elles. Par exemple nous allons créer une branche:

command git checkout -b <nom-branche>

• Pour passer simplement d’une branche à une autre, utilisez:

git checkout <nom-branche>

Git remote
• Cette commande remote permet à un utilisateur de se connecter à un dépôt

distant. La commande suivante répertorie les dépôts distants actuellement
configurés:

git remote –v

• Cette commande permet à l’utilisateur de connecter le dépôt local à un serveur
distant:

git remote add origin <93.188.160.58>

Branche git
• La commande git branch peut être utilisée pour répertorier, créer ou supprimer

des branches. Pour répertorier toutes les branches présentes dans le dépôt,
utilisez:

git branch

• Pour supprimer une branche:

git branch –d <nom-branche>

Git pull
• Pour fusionner toutes les modifications présentes sur le dépôt distant dans le

répertoire de travail local, la commande pull est utilisée. Usage:

git pull

Git merge
• La commande git merge est utilisée pour fusionner une branche dans la branche

active. Usage:

git merge <nom-branche>

https://www.hostinger.fr/tutoriels/meilleurs-clients-git-gui/

Git diff
• La commande git diff permet de lister les conflits. Pour visualiser les

conflits d’un fichier, utilisez

git diff --base <nom-fichier>

• La commande suivante est utilisée pour afficher les conflits entre les branches
à fusionner avant de les fusionner:

git diff <branche-source> <branche-cible>

• Pour simplement énumérer tous les conflits actuels, utilisez:

git diff

Git tag
• Le marquage est utilisé pour marquer des commits spécifiques avec des poignées

simples. Un exemple peut être:

git tag 1.1.0 <insert-commitID-here>

Git log
• L’ exécution de cette commande génère le log d’une branche. Un exemple de

sortie :

commit 15f4b6c44b3c8344caasdac9e4be13246e21sadw
Author: Alex Hunter <alexh@gmail.com>
Date: Mon Oct 1 12:56:29 2016 -0600

Git reset
• Pour réinitialiser l’index et le répertoire de travail à l’état du dernier

commit, la commande git reset est utilisée :

git reset --hard HEAD

Git rm
• Git rm peut être utilisé pour supprimer des fichiers de l’index et du

répertoire de travail. Usage:

git rm nomfichier.txt

Git stash
• L’une des moins connues, git stash aide à enregistrer les changements qui ne

doivent pas être commit immédiatement. C’est un commit temporaire. Usage:

git stash

Git show
• Pour afficher des informations sur tout fichier git, utilisez la commande git

show . Par exemple:

git show

Git fetch
• Git fetch permet à un utilisateur d’extraire tous les fichiers du dépôt distant

qui ne sont pas actuellement dans le répertoire de travail local. Exemple
d’utilisation:

git fetch origin

Git ls-tree
• Pour afficher un fichier arborescent avec le nom et le mode de chaque élément,

et la valeur SHA-1 du blob, utilisez la commande git ls-tree . Par exemple:

git ls-tree HEAD

Git cat-file
• À l’aide de la valeur SHA-1, affichez le type d’un fichier à l’aide de la

commande git cat-file . Par exemple:

git cat-file –p d670460b4b4aece5915caf5c68d12f560a9fe3e4

Git grep
• Git grep permet à un utilisateur de rechercher dans les arbres de contenu des

expressions et / ou des mots. Par exemple, pour rechercher
www.hostinger.com dans tous les fichiers, utilisez:

git grep "www.hostinger.com"

Gitk
• Gitk est l’interface graphique du dépôt local. Vous pouvez l’appeler en

exécutant:

gitk

Git instaweb
• Avec la commande git instaweb , un serveur Web peut être exécuté par interface

avec le dépôt local. Qui redirige directement vers un serveur web. Par exemple:

git instaweb –httpd=webrick

Git gc
• Pour optimiser le dépôt en supprimant les fichiers inutiles et les optimiser,

utilisez:

git gc

git archive
• La commande git archive permet à un utilisateur de créer un fichier zip ou tar

contenant les composants d’un arbre du dépôt. Par exemple:

git archive --format=tar master

Git prune
• Via la commande git prune , les fichiers qui n’ont pas de pointeurs entrants

seront supprimés. Usage:

git prune

Git fsck
• Pour effectuer une vérification d’intégrité du système de fichiers git,

utilisez la commande git fsck . Tous les fichiers corrompus seront identifiés:

git fsck

Git rebase
• La commande git rebase est utilisée pour la réapplication des commits sur une

autre branche. Par exemple:

git rebase master

Migrer un repo (perso) vers un autre (de groupe)

1. Cloner le dépôt source
Depuis la machine locale (ou un serveur intermédiaire), il faut cloner son dépôt (privé dans l'exemple) avec toutes les
branches et tags :

git clone --mirror git@gitlab.com:ton-utilisateur/ancien-repo.git

--mirror est important : il clone tout (branches, tags, refs, hooks, etc.).

2. Créer le dépôt de destination
• Dans GitLab, aller dans son groupe / sous-groupe → New project.
• Donner un nom au projet (par ex. nouveau-repo).
• Vérifier que les permissions correspondent à ce que l'on veut (visibilité, accès aux

membres du groupe).

Cela donnera une nouvelle URL Git (quelque chose comme) :

git@gitlab.com:mon-groupe/mon-sous-groupe/nouveau-repo.git

3. Pousser tout le contenu dans le nouveau dépôt
Dans le dossier cloné :

cd ancien-repo.git

git push --mirror git@gitlab.com:mon-groupe/mon-sous-groupe/nouveau-repo.git

Cela va pousser toutes les branches, tags et l’historique dans le repo du groupe.

4. Vérifications
• Vérifier sur GitLab que toutes les branches et tags sont bien présents.
• Tester un clone du nouveau dépôt pour s’assurer que tout est correct :

git clone git@gitlab.com:mon-groupe/mon-sous-groupe/nouveau-repo.git

Astuce : garder le dépôt original en lecture seule

Si on veut éviter que des contributions continuent sur l’ancien dépôt :

• Aller dans Settings > General > Visibility, project features, permissions.

• Mettre le repo en archivé → plus personne ne peut pousser dessus, mais l’historique
reste accessible.

SOUS-MODULES

Asking IA :

sur un dépot gitlab, j'ai créé un répository, avec un projet constitué de 2 dossiers
principaux Dans 1 de ces dossiers, il y avait déjà un répertoire .git après avoir initié le
dépot (dans le répertoire parent), puis git add . / git commit / ... Je me rends compte que le
second dossier est considéré comme un sous-module, qui apparait sous cette forme dans Gitlab :
sousDossier @ d17a9e2d au lieu d'être un dossier à part entière, contenant des fichiers et du
code. Comment remédier à ce problème et remplacer le sous-module (sorte d'alias) par le "vrai"
répertoire ?

GPT-4o mini
Pour résoudre le problème où un répertoire est traité comme un sous-module
dans GitLab, vous pouvez suivre ces étapes pour le convertir en un véritable
répertoire dans votre dépôt. Voici comment procéder :

Étapes pour retirer un sous-module et le convertir en répertoire
1.Supprimer le sous-module : Tout d'abord, vous devez supprimer le sous-module de votre dépôt Git.

Exécutez les commandes suivantes dans le terminal :

• git rm --cached chemin/vers/sousDossier

Cela supprimera le sous-module de l'index Git tout en conservant les fichiers localement.

- Le cas échéant -

• Supprimer la référence au sous-module : Ouvrez le fichier .gitmodules à la racine de votre dépôt et
supprimez la section qui correspond au sous-module. Cela ressemble généralement à ceci :

[submodule "chemin/vers/sousDossier"]
 path = chemin/vers/sousDossier
 url = url_du_sous_module

Enregistrez et fermez le fichier.

• Faire un git add des changements : Une fois que vous avez supprimé la référence, ajoutez les
changements à votre dépôt :

git add .gitmodules chemin/vers/sousDossier

-

• Commitez les changements : Ensuite, engagez les modifications que vous venez de faire :

git commit -m "Retrait du sous-module et conversion en dossier normal"

• Vérifier la structure : Assurez-vous que le contenu de sousDossier est bien présent sans référence au sous-
module. Vous devriez maintenant pouvoir travailler avec ce dossier comme un répertoire normal.

• Pousser les modifications sur GitLab : Finalement, poussez vos modifications vers GitLab :

git push origin main

Remplacez main par le nom de votre branche si besoin.

Résumé des commandes

Action Commande
Supprimer le sous-module git rm --cached chemin/vers/sousDossier
Modifier .gitmodules Éditez et supprimez la section correspondante
Ajouter les changements git add .gitmodules chemin/vers/sousDossier

Commiter les changements
git commit -m "Retrait du sous-module et conversion en
dossier normal"

Pousser les modifications git push origin main

Une fois ces étapes réalisées, le dossier devrait apparaître correctement
dans votre dépôt GitLab sans être considéré comme un sous-module.

Procédures utiles

synchro locale par rapport à un dépôt distant

Il manque 1 ou plusieurs branches d'un projet sur un PC local (qui n'est pas à jour)

=> Récupérer la branche : branche_x qui existe sur le répo GitLab ?

Check de l'ensemble des branches en locales (affichage branches locales + remote) :
git branch -a

Récup des dernières infos : mise à jour, localement, des références distantes :
git fetch origin

Création de la branche locale souhaitée, à partir de la branche distante :
git checkout -b branche_x origin/branche_x

Push vers plusiseurs dépôts distants - Permission denied

un projet git local possède 2 dépôts distants : 1 sur GitHub, l'autre sur GitLab :
je souhaite faire un push vers le dépôt github (j'ai normalement une paire de clés public / privées associée à ce
compte), mais ça me retourne l'erreur :

git@github.com: Permission denied (publickey). fatal : Impossible de lire le dépôt distant. Veuillez vérifier que
vous avez les droits d'accès et que le dépôt existe.

L’erreur que vous rencontrez indique que votre clé SSH n’est pas reconnue par GitHub. Voici quelques étapes pour
résoudre ce problème :

Vérification de la Configuration SSH

1. Vérifiez si votre clé SSH est ajoutée à l'agent SSH

Ouvrez un terminal et entrez la commande suivante :
ssh-add -l

Si votre clé n'est pas répertoriée, vous pouvez l'ajouter avec :

ssh-add ~/.ssh/id_rsa

Assurez-vous de remplacer ~/.ssh/id_rsa par le chemin correct de votre clé privée si elle n'est pas le nom par défaut.

2. Ajoutez votre clé SSH à GitHub
Si vous n'avez pas encore ajouté votre clé SSH à votre compte GitHub, faites ceci :

1. Copiez votre clé publique avec cette commande :

cat ~/.ssh/id_rsa.pub

Connectez-vous à votre compte GitHub.

• Allez dans Settings > SSH and GPG keys.

• Cliquez sur New SSH key, puis collez votre clé publique et donnez-lui un titre.

3. Vérifiez l'URL de votre dépôt GitHub
Assurez-vous que l'URL de votre dépôt distant est bien configurée pour utiliser SSH. Exécutez :

git remote -v

Vous devriez voir quelque chose comme :

origin git@github.com:<votre-utilisateur>/<votre-repo>.git (fetch)
origin git@github.com:<votre-utilisateur>/<votre-repo>.git (push)

Si ce n'est pas le cas, vous pouvez modifier l'URL avec :

git remote set-url origin git@github.com:<votre-utilisateur>/<votre-repo>.git

Essayer de se connecter à GitHub
Testez si la connexion SSH fonctionne en executant :

ssh -T git@github.com

Vous devriez voir un message de bienvenue si la configuration est correcte.

4. Vérifiez les permissions de votre clé
Assurez-vous que les permissions de votre clé SSH sont correctes. Cela peut être fait avec :

chmod 600 ~/.ssh/id_rsa

chmod 644 ~/.ssh/id_rsa.pub

Conclusion
Après avoir effectué ces vérifications et modifications, essayez à nouveau de faire un git push vers votre dépôt
GitHub. Si vous rencontrez toujours des problèmes, n'hésitez pas à me le faire savoir, et nous pouvons explorer
d'autres solutions.

Supprimer un fichier qui ne devrait pas se trouver sur un dépôt git, pour toutes les branches :

git filter-repo --path fichier --invert-paths

Effet :
supprime le fichier > de toutes les branches > de tous les commits > tags inclus

=> Marche pas suivant la version de git

En fait : installer :
$ sudo apt install git-filter-repo

git filter-repo --use-base-name --path [FILENAME] --invert-paths

exemple :
git filter-repo --use-base-name --path googleAuth.asm --invert-paths --force

Autre solution : ajouter le/les fichiers au .gitignore, puis faire le nécessaire pour chaque branche et chaque outil de
versioning (Github/gitlab) :

git switch dev

git rm --cached ms-n1/Dockerfile

git rm --cached docker-compose.yml

git add .

git commit -m 'maj ref docker'
git push origin dev
git push github dev

Suppression d'un fichier de l'historique du projet, définition d'un dépôt origin sur Gitlab et synchro de toutes les
branches (local=>origin)

git filter-repo --use-base-name --path googleAuth.asm --invert-paths --force

git remote add origin git@gitlab.com:usergroup/gp_proj1/microservice/msnotif.git

git push origin --all

git push origin --tags

	1. Fusionner branch1 dans branch2 (sans conflit)
	2. Rebaser branch2 sur branch1 (historique linéaire)
	Commandes GIT de Base
	Git config
	Git init
	Git add
	Clone git
	Git commit
	Git status
	Git push
	Git checkout
	Git remote
	Branche git
	Git pull
	Git merge
	Git diff
	Git tag
	Git log
	Git reset
	Git rm
	Git stash
	Git show
	Git fetch
	Git ls-tree
	Git cat-file
	Git grep
	Gitk
	Git instaweb
	Git gc
	git archive
	Git prune
	Git fsck
	Git rebase
	Migrer un repo (perso) vers un autre (de groupe)
	1. Cloner le dépôt source
	2. Créer le dépôt de destination
	3. Pousser tout le contenu dans le nouveau dépôt
	4. Vérifications
	Astuce : garder le dépôt original en lecture seule
	Étapes pour retirer un sous-module et le convertir en répertoire
	Résumé des commandes
	Procédures utiles
	Push vers plusiseurs dépôts distants - Permission denied

	Vérification de la Configuration SSH
	1. Vérifiez si votre clé SSH est ajoutée à l'agent SSH
	2. Ajoutez votre clé SSH à GitHub
	3. Vérifiez l'URL de votre dépôt GitHub

	Essayer de se connecter à GitHub
	4. Vérifiez les permissions de votre clé

	Conclusion

